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1 Introduction

Let X be a geometrically connected nonsingular projective curve of genus g over Fq.
Then by a result of Weil and Deligne, we have that the number of points on X over Fqn
satisfies the following bound:

#X(Fqn) ≤ qn + 1 + 2g
√
qn

This formula has an interesting cohomological interpretation as follows. Fix a prime ` 6| q
for the remainder of the paper. Consider the Frobenius endomorphism, Frobq : X → X.
The Frobenius endomorphism also induces endomorphisms on the étale cohomology of
X, H i

ét(X,Q`). We can identify X(Fqn) with the fixed points of Frobnq , and then apply
the Grothendieck-Lefschetz fixed point theorem to obtain the following:

#X(Fqn) =

2∑
i=0

(−1)iTr((Frobq)
n|H i

ét(X,Q`))

= 1−
2g∑
k=1

βk + qn

Here, βk is the kth eigenvalue of (Frobq)
n acting on H1

ét(X,Q`). We’ve used a result of
Deligne that Frobq acts on H0

ét(X,Q`) and H2
ét(X,Q`) by the scalars 1 and q respectively.

Intuitively, we should expect these to be true, as H0
ét(X,Q`) is one-dimensional and keeps

track of connected components, while H2
ét(X,Q`) is also one-dimensional and detects

the degree of Frobq, which is q. More generally, Deligne proved that the modulus of

the eigenvalues of Frobq on H i
ét(X,Q`) are bounded by q

i
2 , which allows us to bound

#X(Fqn) as follows:

#X(Fqn) ≤ 1− dim(H1
ét(X,Q`))(−

√
q) + qn

= 1 + qn + 2g
√
qn

We are interested in curves that have the maximal number of points with respect to this
bound, which we make clear in the following definition.

Definition 1.1. Let X be a geometrically connected nonsingular projective curve of
genus g defined over Fq. We say X is maximal over Fqn if

#X(Fqn) = 1 + qn + 2g
√
qn

It is an important remark that X is maximal over Fqn iff Frobnq acts on H i
ét(X,Q`) by

the scalar (−1)iq
ni
2 .

We have a few examples of maximal varieties:

Consider the projective curve H : yqz + yzq = xq+1 over Fq2 . This has one point at
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infinity, [1, 0, 0]. To count the rest of the points, we consider the affine part of H given
by yq + y = xq+1. Conveniently, this is the same as Tr(y) = Nm(x), where Tr and Nm
are the trace and norm maps from Fq2 to Fq. Fix an x ∈ Fq2 . Then since the trace is
a surjective linear map, we see that there are q values of y with Tr(y) = Nm(x). This
gives

q2 · (q + 1) = q3 + 1

points on H(Fq2). By the degree-genus formula, we see that the genus of X, g is given
by:

g =
(d− 1)(d− 2)

2
=
q(q − 1)

2

Putting this together yields:

q2 + 1 + 2g
√
q2 = q2 + 1 + q3 − q2

= q3 + 1

Thus, H is maximal over Fq2 .

In the elliptic curve case (g = 1), supersingular curves give an example of maximal
curves in the following way. Let p > 3 and suppose E/Fp is supersingular. Then it is
a standard result that this is true iff #E(Fp) = p + 1. By the Weil conjectures, the
eigenvalues of Frobp on H1

ét(E,Q`) are ±i√p. Then,

#E(Fp2) = p2 + 1− (i
√
p)2 − (−i√p)2

= p2 + 1 + 2p

which tells us that E is maximal over Fp2 .

In these examples, we’ve used the trace formula to put an upper bound on the number
of points a variety has, however we can also use this formula to put a lower bound on
the number of points. In particular, these geometric techniques can prove that certain
varieties have any points at all. Here is an interesting example.

Consider the Fermat quartic:

F : x4 + y4 + z4 + w4 = 0

It turns out that F considered over Fq is the reduction of a K3 surface S whose middle
cohomology is 22-dimensional. Thus we have the following bound:

#F (Fq) ≥ q2 − 22q + 1

Thus, F has a point over Fq whenever q > 22. By Fermat’s little theorem, F has no
points over F5. It is easy to find points for q = 2, 3, 7, 8, 9, 11, 13, 16, 17, and 19. Thus,
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F has points over every finite field except F5.

Our study of maximal varieties will be intimately related with finite group actions on
varieties over finite fields, and the resulting representations coming from the cohomology.
In the following sections, we work through an extended example in which we explicitly
produce a certain class of representations of GL2(Fq) in the cohomology of a certain
variety.

2 Representation Theory

For α ∈ F×q , consider the curves Xα : xyq−xqy = αzq+1. Consider their disjoint union as

a projective variety X ∈ P2(Fq). Since each Xα is connected, we see that the connected
components of X are in bijection with F×q . It turns out that X has an action of GL2(Fq)
given by: (

a b
c d

)
· [x, y, z] = [ax+ by, cx+ dy, z]

A matrix A ∈ GL2(Fq) sends a point in Xα to a point in Xdet(A)α. We also have an

action of F×
q2

on X as follows. For β ∈ F×
q2

:

β · [x, y, z] = [βx, βy, z]

This sents a point in Xα to a point in XNm(β)α. A crucial fact to notice here is that the

actions of GL2(Fq) and F×
q2

commute, as:

A · (β · [x, y, z]) = A · [βx, βy, z]
= [βax+ βby, βcx+ βdy]

= β · (A · [x, y, z])

This will be important, as it means the actions these groups induce on H1
ét(X,Q`) will

commute, and will allow us better understand the action of GL2(Fq) using the action of
the simpler (abelian, in fact cyclic) group F×

q2
. For notational purposes, we will refer to

the representations of F×
q2

and GL2(Fq) on H1
ét(X,Q`) as ρC and ρM respectively. The

goal of this example is to understand ρC and leverage this information to show that ρM
breaks up into a special class of representations called cuspidal representations. First,
we need the following definition.

Definition 2.1. A character χ : F×
q2
→ Q`

×
is called generic if it doesn’t factor through

the norm map to F×q . Equivalently for α ∈ F×
q2

a generator, χ(α) is not a (q − 1)st root
of unity.

Of the (q2 − 1) characters of F×
q2

, q2 − q of them are generic. With this definition in
place, we can state the following proposition:
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Proposition 2.2. ρC =
⊕

χ generic

χ⊕(q−1).

Proof. We begin the proof by computing Tr(ρC(α)) for α ∈ F×
q2

. As usual, we use the
Lefschetz trace formula:

Tr(ρC(α)) = Tr([α])|H0
ét(X,Q`) + Tr([α])|H2

ét(X,Q`)−#Fix([α])

We tackle the computation in cases.

α = 1

In this case:

Tr(ρC(1)) = dim(H1
ét(X,Q`))

= (q − 1)dim(H1
ét(Xα,Q`))

= q(q − 1)2

The last equality equality comes from the fact that each Xα has genus q(q−1)
2 .

Nm(α) 6= 1

If Nm(α) 6= 1, then Tr(ρC(α)) = 0, as that means α doesn’t even fix connected compo-
nents, so it certainly doesn’t fix any points. Since [α] is a degree 1 automorphism permut-
ing the connected components, and H0

ét(Xα,Q`) and H2
ét(Xα,Q`) are one-dimensional,

we see that [α]|H0
ét(Xα,Q`) and [α]|H2

ét(Xα,Q`) are just (q−1)-dimensional permutation
matrices. When Nm(α) 6= 1 this permutation doesn’t fix any connected components,
and thus has trace 0.

Nm(α) = 1, α 6= 1

In this case for i = 0, 2, [α]|H i
ét(X,Q`) is the identity so

Tr(α)|H i
ét(X,Q`) = q − 1

Now we need to compute the number of fixed points, so suppose [x, y, z] = [αx, αy, z].
We must have z = 0, otherwise this implies x = αx. The points with z = 0 are called the
“points at infinity”, and they are all clearly fixed, as [x, y, 0] = [αx, αy, 0]. The number
of points at infinity in each Xα is q + 1 and they are naturally in bijection with P1(Fq).
These facts together give:

Tr(ρC(α)) = (q − 1) + (q − 1)− (q + 1)(q − 1)

= −(q − 1)2
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Now that we’ve computed all of the traces, we compute the multiplicity of each generic
χ in ρC and show that it is (q− 1). Since there are q(q− 1) such generic characters, and
dim(H1

ét(X,Q`)) = q(q− 1)2, we will have completely decomposed ρC . We compute the
following inner product for χ generic:

ρC · χ =
1

q2 − 1

∑
α∈F×

q2

Tr(ρC(α))χ(α) (1)

=
1

q2 − 1

q(q − 1)2 +
∑

Nm(α)=1,α 6=1

−(q − 1)2χ(α)

 (2)

=
1

q2 − 1

(
q(q − 1)2 + (q − 1)2

)
(3)

= q − 1 (4)

The genericity of χ implies that {χ(α)|Nm(α) = 1} doesn’t only contain 1, forcing the
inner sum in (2) to collapse to −1 by a traditional character sums argument. Although
we don’t need to show it since we’ve already matched up the dimensions, we can see that
ρC doesn’t contain any non-generic χ directly by observing that χ(α) = χ(Nm(α)) = 1
for α with norm 1. Thus the sum would collapse completely in that case and the
multiplicity would be 0. Thus we have the desired decomposition of ρC .

3 A Langlands Correspondence

Our work with ρC will allow us to determine the decomposition of ρM into irreducible
representations and state a correspondence similar to the Langlands correspondence. For
χ : F×

q2
→ Q`

×
, we can consider H1

ét(X,Q`)[χ], the χ-isotypic component of ρC , which is
defined as follows:

H1
ét(X,Q`)[χ] = {v ∈ H1

ét(X,Q`)| ρC(α)(v) = χ(α)v,∀α ∈ F×
q2
}

Clearly H1
ét(X,Q`)[χ] is a representation of F×

q2
, and in fact, by the calculation in the

previous section, this will be (q−1)-dimensional when χ is generic, and trivial otherwise.
Since the actions of F×

q2
and GL2(Fq) commute, we actually have that H1

ét(X,Q`)[χ] is

a representation of GL2(Fq), and we even have a formula for the trace of an element
A ∈ GL2(Fq) on H1

ét(X,Q`)[χ] as follows:

Tr(A)|H1
ét(X,Q`)[χ] =

1

|F×
q2
|
∑
α∈F×

q2

χ(α)Tr(α−1 ◦A)|H1
ét(X,Q`)

This formula follows in a straightforward way from the orthogonality relations. To un-
derstand ρM , we need only to understand its restrictions to the ρC [χ], and using some
facts about the representation theory of GL2(Fq), we can show that this restriction is
either an irreducible (cuspidal) representation or a sum of characters. It turns out that
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the former holds, and in fact this variety X contains all the cuspidal representations of
GL2(Fq) in its middle cohomology.

In fact, we have the following bijection between a pair (χ, χ) and ρM |H1
ét(X,Q`)[χ],

which turns out to be the cuspidal representation of GL2(Fq) typically called π(χ). It
turns out that π(χ) ∼= π(χ), so this makes sense. Before we prove this, we quickly review
the fundamental facts about the representation theory of GL2(Fq).

4 Representation theory of GL2(Fq)

Before we discuss the representation theory ofGL2(Fq) it is useful to discuss its conjugacy
classes. Given a matrix M ∈ GL2(Fq), we can mostly determine its conjugacy class by
its eigenvalues. If M has distinct eigenvalues in Fq, then it is conjugate to:

Mr,s =

(
r 0
0 s

)
If M has eigenvalues α, α in Fq2 but not Fq, then they are of the form α = r + s

√
D,

α = r − s
√
D, with D a quadratic nonresidue. Then M is conjugate to:

Mα =

(
r Ds
s r

)
Finally, if M has repeated eigenvalue t, then M is conjugate to one of the following:

Mt =

(
t 0
0 t

)
M ′t =

(
t 1
0 t

)
We will need these later when determining the character of a representation.

Let T,B, P ⊂ GL2(Fq) = G be the standard torus, the standard unipotent subgroup,
and the Borel subgroup respectively. It is well known that P is a normal subgroup of
B and B/P ∼= T . A character of T consists of two characters ψ,ψ′ of F×q . We can
extend a character (ψ,ψ′) of T to B trivially, by forcing it to act trivially on P . Then
we define the following principal series representation of G as I(ψ,ψ′) = IndGB(ψ,ψ′).
The dimension of this representation is just the index of B in G, which is just q + 1.

We state the following results about I(ψ,ψ′) without proof.

Proposition 4.1. The representation I(ψ,ψ′) is irreducible iff ψ 6= ψ′, otherwise it splits
into a q-dimensional irreducible representation and 1-dimensional representation denoted
I(ψ,ψ′) and I ′(ψ,ψ′) respectively. These two subquotients of the reducible principal
series representations are called special.
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With the above proposition, we’ve almost enumerated all the irreducible representa-
tions of GL2(Fq). It turns out that there is another class of irreducible representations
called cuspidal representations which have dimension q−1 and whose traces are given in
terms of generic characters χ of F×

q2
. Explicitly, given a generic χ, there is an irreducible

representation π(χ) with the following traces:

Tr(π(χ)(Mt)) = (q − 1)χ(t)

Tr(π(χ)(M ′t)) = −χ(t)

Tr(π(χ)(Mr,s)) = 0

Tr(π(χ)(Mα)) = −χ(α)− χ(α)

It is important to notice that π(χ) and π(χ) have the same traces, and thus are iso-
morphic as representations. In the next section, we finish our work with this variety X
by proving that it contains all of these cuspidal representations in its cohomology and
briefly remark on how this makes X a finite field analogue of a Shimura variety.

5 Cuspidal Representations of GL2(Fq)

Recall from previous sections we have ρC and ρM representations of F×
q2

and GL2(Fq) on

H1
ét(X,Q`). For a generic character χ of F×

q2
, we know that ρM restricted to H1

ét(X,Q`)[χ]

is a (q−1)-dimensional representation of GL2(Fq). With the notation from the previous
section in place, we can make the following proposition. For ease of notation, set:

ρ = ρM |
(
H1
ét(X,Q`)[χ]

)
Proposition 5.1. ρ ∼= π(χ) as representations of GL2(Fq).

Proof. We know that ρ splits into irreducible representations, and since those can only
have dimension q + 1, q, q − 1, or 1, it follows that if ρ isn’t cuspidal, then it must be a
sum of q − 1 characters. It is easy to show that ρ is cuspidal, but we have to work out
most of the traces to show that ρ is actually π(χ).

To show how quickly it follows that ρ is not cuspidal, we compute it trace on M ′1.

Tr(ρ(M ′1)) =
1

q2 − 1

∑
α∈F×

q2

χ(α)Tr(M ′1 ◦ α−1)

=
1

q2 − 1

∑
Nm(α)=1

χ(α)(2q + 2− Fix(M ′1 ◦ α−1))
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Now consider M ′1 ◦α−1. If this fixed an affine point [x, y, z] with α ∈ Fq, then we would
have y = λx, with λ ∈ Fq. However, lines of rational slope don’t intersect X, as:

xyq − yqx = γzq+1

xq+1λq − xq+1λ = zq + 1

0 = zq+1

Thus, we would have x = y = z = 0, which can’t happen. On the other hand α has to
be in Fq, since fixing an affine point [x, y, z] means [x, y] is an eigenvector for M ′1 with
eigenvalue α−1, but M ′1 has eigenvalues in Fq.

Thus, the only fixed points of this action are at infinity, where F×
q2

acts trivially. In
order for a point at infinty to be fixed, we must have:

[a, b, 0] = [a+ b, b, 0]

It is clear that only [1, 0, 0] is fixed. Now we expand about the fixed point in the
connected component corresponding to γ ∈ F×q . Let Y = y

x and Z = z
x . Then formally

we have the following:

Y q − Y = γZq+1

Y = Y q − γZq+1

= (Y q − γZq+1)q − γZq+1

= −γZq+1 − γZq(q+1) − . . .

The variable Z is affected by the transformation M ′1 ◦ α−1 in the following way.

(M ′1 ◦ α−1)(Z) =
z

α−1(x+ y)

= α
Z

1 + Y

= αZ − αβZq+2 − . . .

From this we see that the index of the fixed point [1, 0, 0] is 1 unless α = 1, in which
case it is q + 2. Now we finish the computation:

Tr(ρ(M ′1)) =
1

q2 − 1
(χ(1)(2q − 2− (q + 2)(q − 1)) +

∑
Nm(α)=1,α 6=1

χ(α)(2q − 2− (q − 1)))

=
1

q2 − 1
(−q2 + q +−χ(1)(q − 1))

= −1
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Now suppose ρ is a sum of characters. It is well known that characters of GL2(Fq) factor
through the determinant map to Fq. Using this:

Tr(ρ(M ′1)) =
∑
i

χi(M
′
1)

=
∑
i

χi(det(M
′
1))

=
∑
i

χi(1)

= q − 1

6= −χ(1)

Thus ρ is not a sum of characters, and thus must be cuspidal. To pin down which pair
(χ, χ) is associated to ρ, we compute the remaining traces.

First, we compute Tr(ρ(Mt)).

Tr(ρ(Mt)) =
1

q2 − 1

∑
α∈F×

q2

χ(α)Tr(α−1 ◦Mt)

=
1

q2 − 1

∑
α∈F×

q2

χ(α)Tr(tα−1)

=
1

q2 − 1

∑
α∈F×

q2

χ(tα)Tr(α−1)

= χ(t)

 1

q2 − 1

∑
α∈F×

q2

χ(α)Tr(α−1)


= χ(t)Tr(ρ(I))

= (q − 1)χ(t)

Now that we know what the central character is, we can compute Tr(ρ(M ′s) using the
following facts. First observe:

M ′s =

(
s 0
0 s

)
·
(

1 1
s

0 1

)
=

(
s 0
0 s

)
·
(

1
s 0
0 1

)
·
(

1 1
0 1

)
·
(

1
s 0
0 1

)−1

Now we can easily compute Tr(ρ(M ′s) since Ms is central in GL2(Fq) and therefore acts
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by a scalar (in this case χ(s)). We have:

Tr(ρ(M ′s)) = Tr(ρ(Ms)ρ(M ′1))

= χ(s)Tr(ρ(M ′1))

= −χ(s)

Finally, we compute Tr(ρ(Mβ)) as follows. First we examine the fixed points of Mβ◦α−1.
This can fix affine points whenever α = β, β since we have lines of eigenvectors y = Λx
with Λ ∈ F×

q2
and not F×q . Then we solve the following:

xyq − yqx = βzq+1

(Λq − Λ)xq+1 = γzq+1

This clearly has q + 1 solutions in projective coordinates, each giving a fixed point of
index 1 in each connected component. Now we consider fixed points at infinity. Suppose

Mβ =

(
a Db
b a

)
. Then we want to know if [x, y, 0] can be fixed by this matrix. If

y = 0, then [x, 0, 0] 6= [ax, bx, 0] since b 6= 0. If y 6= 0, then [x, y, 0] = [ax+Dby, bx+ay, 0]
iff:

bx2 + axy = axy +Dby2

However this is impssible since D isn’t a square. Thus, no points at infinity are fixed.
Now we can finish the computation as follows:

Tr(ρ(Mβ)) =
1

q2 − 1

∑
Nm(α)=Nm(β)

χ(α)(2q − 2− Fix(Mβ ◦ α−1))

=
1

q2 − 1
((χ(β) + χ(β))(2q − 2− (q + 1)(q − 1))− (χ(β) + χ(β))(2q − 2)

= −(χ(β)) + χ(β)

Now we can finally show ρ ∼= π(χ). Since we know ρ is cuspidal, Tr(ρ(Ma,b)) = 0. Thus,
since the traces of ρ and π(χ) agree on conjugacy class representatives of GL2(Fq), they
must be isomorphic.

Before moving on, we have a final remark.

Remark 5.2. This variety X is a finite field analogue of a Shimura variety in the
sense that we have exhibited a Langlands correspondence in its cohomology. The corre-
spondence comes from the following idea. Let Qp2 be the unique unramified quadratic
extension of Qp. One way of producing a 2-dimensional representation of GQp is to in-
duce a character of GQp2. A character of GQp2 factors through its abelianization, which
by local class field theory is canonically isomorphic to Qp2

∼= Z × Zp2. If we force the
character to be continuous, then it factors through a root of unity in the Z component
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and through a finite quotient of Zp2, of which F×
q2

is an example. So we’ve exhibited a

correspondence between (certain) 2-dimensional representations of WQp and (automor-
phic, cuspidal) representations of GL2(Fq), and we’ve constructed this correspondence
in the cohomology of our variety X.

6 Gauss Sums and Cohomology

Consider varieties of the following form for Q(~x) a nondegenerate quadratic form over
Fq:

Y (Q) : yq − y = Q(~x)

We wish to determine for which Q and k ≥ 1 is Y (Q) maximal over Fqk . The variety
Y (Q) has a few group actions on it. It has an action of Fq by a · (y, ~x) = (y + a, ~x). It
also has an action of O(Q), the group of linear transformations preserving the quadratic
form Q. Finally, as all varieties over finite fields do, it has an action of FrobZq . Since Fq
acts on Y (Q) by Fq-linear automorphisms, its action commutes with FrobZq , which will
allow us to use similar ideas from the previous section to better understand the trace
of Frobq on the cohomology of Y (Q), and thus determine its maximality. A result of
Nick Katz from his paper “Crystalline Cohomology” in line with the above statements
is useful to state here.

Theorem 6.1. Let Y/Fq be projective and smooth, and G a finite group acting on Y by
Fq-linear automorphisms, and ρ an irreducible complex (or `-adic) representation of G.
Define:

S(Y/Fq, ρ, n) =
1

#G

∑
g∈G

Tr(ρ(g))#Fix(Frobnq ◦ g−1)

Then the following are equivalent:

(1) The multiplicity of ρ is one in H i0
ét (Y (Q),Q`) and zero in H i

ét(Y (Q),Q`) for i 6= i0.

(2) For all n ≥ 1, we have:

|S(Y/Fq, ρ, n)| = (
√
q)i0n

(3) Frobq acts on H i
ét(Y (Q),Q`) by the scalar (−1)i0S(Y/Fq, ρ, 1).

In the case of Y = Y (Q), G = Fq, and ρ = ψ we will see that S(Y (Q)/Fq, χ, n) is
a power of a Gauss sum, which we will compute and use to determine when Y (Q) is
maximal. To ease our computations, we use the following result about quadratic forms
over Fq from Serre’s “A Course in Arithmetic” without proof.
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Proposition 6.2. Every nondegenerate quadratic form over Fq is equivalent to
X2

1 + . . . cX2
n where c ∈ F×q . This gives two equivalence classes, depending on whether or

not c is a quadratic residue. When we want to emphasize it, we will write Y (QR) and
Y (QN ) for the quadratic residue and nonresidue classes respectively.

With these propositions in place, we compute S(Y (Q)/Fq, χ, n). The key to realizing
this quantity as being related to Gauss sums is by computing the quantity Fix(Frobnq ◦
[−a]). A point (y, ~x) is fixed when (y, ~x) = (yq

n − a, ~xqn). This means each component
of ~x is in Fqn and that yq

n − y = a. Now, we recognize that the left hand side is the
trace of yq − y from Fqn to Fq. Thus, whenever Tr(Q(~x)) = a, we get q fixed points,
corresponding to the q distinct solutions to yq − y = a. Define:

I(~x, a) =

{
q if Tr(Q(~x)) = a
0 otherwise

Then we have the following:

S(Y (Q)/Fq, ψ, n) =
1

q

∑
a∈Fq

ψ(a)#Fix(Frobnq ◦ [−a])

=
1

q

∑
a∈Fq

ψ(a)
∑

~x∈(Fn
q )d

I(~x, a)

=
1

q

∑
~x∈(Fn

q )d

∑
a∈Fq

ψ(a)I(~x, a)

=
∑

~x∈(Fn
q )d

ψ(Tr(Q(~x)))

=

d−1∏
a=1

∑
x∈Fqn

ψ(Tr(x2))

 ∑
x∈Fqn

ψ(cTr(x2))

By changing the order of summation and applying Fubini’s theorem, we have turned
this sum into a product of sums over finite fields, which will turn out to be Gauss

sums. Let
(
x
q

)
be the Fq-Legendre symbol. Then using the structure of F×q its clear

that
(
x
qk

)
=
(
Nm(x)

q

)
, where Nm denotes the norm from Fqk to Fq. Then we can

manipulate these sums to show that they are in fact Gauss sums in the character sums
sense: ∑

x∈Fqn

ψ(Tr(x2)) =
∑
x∈Fqn

(
x

qn

)
ψ(Tr(x))

=
∑
x∈Fqn

(
Nm(x)

q

)
ψ(Tr(x))

:= gψ(n)
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We are now in the lucky situation of having a Gauss sum on Fqn where the multplicative
and additive characters factor through the respective norm and trace maps to Fq. The
Hasse-Davenport relation tells us the following:

−gψ(n) = (−1)ngψ(1)

Interestingly, we can actually give a “geometric” proof of the Hasse-Davenport relation
using the variety Y : yq − y = x2. For a nontrivial character ψ on Fq, consider:

S(Y, ψ, 1) =
1

q

∑
a∈Fq

ψ(a)#fix(Frobq ◦ [−a])

=
1

q

∑
a∈Fq

ψ(a)q

(
1 +

(
a

q

))

=
∑
a∈Fq

ψ(a)

(
a

q

)
:= gψ

We know thatH1
ét(Y (Q),Q`)[ψ] is one-dimensional, and the trace of Frobq onH1

ét(Y (Q),Q`)[ψ]
is (−1)1gψ. Thus, the trace of Frobnq onH1

ét(Y (Q),Q`)[ψ] is just (−1)ngnψ, sinceH1
ét(Y (Q),Q`)[ψ]

is one-dimensional. On the other hand, the trace of Frobnq on H1
ét(Y (Q),Q`)[ψ] is just

(−1)1S(Y/Fqn , ψ, 1) = S(Y/Fq, ψ, n) = −gψ(n). Equating these two gives the Hasse-
Davenport relation.

In order to determine the maximality of Y (Q), we need to be able to evaluate S(Y (Q), ψ, 1),
which boils down to computing certain Gauss sums over Fq. It is well-known that the

characters ψ of Fq are of them form ψb(a) = ζ
Tr(ab)
p for some b ∈ Fq. Thankfully, there

are only two different flavors of Gauss sums, in the following sense. Write q = pr, then:

Proposition 6.3. For ψb a non-trivial character of Fq and b a quadratic residue, its
associated Gauss sum has the following value:

gψb
= (−1)r+1(

√
p∗)r

For c a quadratic nonresidue:

gψc = −gψb

For the trivial character, ψ0, we have:

gψ0 = q
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Proof. To do this, we compute recall the computation of the standard Gauss sums over
Fp and appeal to the Hasse-Davenport relation. For this section, we use η to denote a
character on Fp. Recall the following equality:∑

a∈Fp

(
a

p

)
ζap =

√
p∗

Proving this equality up to sign is elementary and well-known, whereas getting the sign
correct is more difficult and is carried out in various texts. Now suppose b is a quadratic
residue and consider the Gauss sum associated to ηb:

gηb =
∑
a∈Fp

(
a

p

)
ζabp

=
∑
a∈Fp

(
ab−1

p

)
ζap

=

(
b−1

p

) ∑
a∈Fp

(
a

p

)
ζap

= gη1

=
√
p∗

Now consider the sum gψr for m a quadratic residue. As above, we can show:

gψm = gψ1

Now we consider gψ1 :

gψ1 =
∑
x∈Fq

ζTr(1·x)
p

(
x

q

)
= (−1)r+1gη1

= (−1)r+1
√
p∗

As before, for n a quadratic nonresidue, gψn = −gψ1 . Finally, the statement gψ0 = q is
clear, as each term in the sum is 1 and there are q of them.

Now we can determine under what conditions Y (Q) is maximal over Fkq . As before,
write q = pr, and let consider Y (Q) : yq − y = x2

1 + . . . cx2
d.

Proposition 6.4. 1. When p ≡ 1 (mod 4) The variety Y (QR) is maximal over Fkq iff
d is even.
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2. When p ≡ 3 (mod 4), the variety Y (QR) is maximal over Fkq iff k ≡ 2 (mod 4)
and r, d are odd, or d is even and rdk ≡ 0 (mod 4).

3. When p ≡ 1 (mod 4), the variety Y (QN ) is maximal over Fkq iff k and d are even.

4. When p ≡ 3 (mod 4), the variety Y (QN ) is maximal over Fkq iff exactly one of k
or d is 2 (mod 4) and the others are odd, or d and k are even.

Proof. In order for Y (Q) to be maximal over Fkq , we need that for every i, Frobkq acts

on H i
ét(Y (Q),Q`) by the scalar (−1)iq

ik
2 . For every nontrivial character ψ, we will

show that |S(Y, ψ, n)| = (
√
q)nd, which tells us by Katz’s result that ψ only appears

in Hd
ét(Y (Q),Q`), and with multiplicity 1. For the trivial character, ψ0, we will show

that |S(Y, ψ0, n)| = (
√
q)2nd, so that ψ0 only appears in H2d

ét (Y (Q),Q`) and also with
multiplicity 1. Then we will need to show that Frobkq acts as the correct scalar precisely
when the conditions of the theorem hold. Let ψa be any nontrivial character.

|S(Y (Q), ψa, n)| = |gψa(n)d−1 · gψac(n)|
= (
√
q)n(d−1) · (√q)n

= (
√
q)nd

Similarly, if a = 0, each gψ0 is an nth power of the trivial Gauss sum, which is q. That
gives:

|S(Y (Q), ψ0, n)| = qnd

= (
√
q)2nd

Now we know that Y (Q) only has cohomology in degrees d and 2d, so to determine its
maximality, we only need to show that Frobq acts on Hd

ét(Y (Q),Q`) and H2d
ét (Y (Q),Q`)

via the appropriate scalars. We know from Katz that Frobq acts on the one-dimensional
space Hd

ét(Y (Q),Q`)[ψ] via the scalar (−1)dS(Y (Q), ψ, 1). Thus we need to determine
conditions for so that for all nontrivial ψ:

((−1)dS(Y (Q), ψ, 1))k = (−1)d(
√
q)d

Also we need that for the trivial character ψ0:

S(Y (Q), ψ0, 1)k = (
√
q)2dk

The first is easier, and is as follows:

S(Y (Q), ψ0, 1)k = (gd−1
ψ0
· gψ0·c)

k

= gkdψ0

= qkd

16



Thus we see that Frobq acts by the correct scalar without any condition on r or d. Now
we do the other computation first for Y (QR). Let m,n ∈ F×q be a quadratic residue and
nonresidue respectively.

((−1)dS(Y (QR), ψm, 1))k = (−1)rdk(
√
p∗)rdk (5)

((−1)dS(Y (QR), ψn, 1))k = (−1)rdk+dk(
√
p∗)rdk (6)

In particular, these two quantities must be equal, so:

dk ≡ 0 (mod 2)

Recall that we need these quantities to be equal to (−1)d(
√
p)rdk. Thus, when p ≡ 1

(mod 4), we see that it is enough for d to be even for sums (5) and (6) to be equal to
(−1)d(

√
p)rdk. For p ≡ 3 (mod 4), if d is even, then we only need rdk ≡ 0 (mod 4), and

if d is odd, then we must have k even since dk is even. However, we also need rdk ≡ 2
(mod 4), which means k ≡ 2 (mod 4) and r is also odd. This is what we sought to prove.

Now we consider Y (QN ), and thus have to analyze the following quantities:

((−1)dS(Y (QN ), ψm, 1))k = (−1)d(gd−1
ψm

gψn)k

= (−1)rdk+k(
√
p∗)rdk

((−1)dS(Y (QN ), ψn, 1))k = ((−1)dgd−1
ψn
· gψm)k

= (−1)dk+rdk+k(
√
p∗)rdk

Again, comparing the terms we see that dk ≡ 0 (mod 2). For Y (QN ) to be maximal,
we need:

(−1)k(
√
p∗)rdk = (−1)d(

√
p)rdk

If p ≡ 1 (mod 4), then we need d and k to have the same parity, and thus they must
both be even, since dk is even. This is the only condition. If p ≡ 3 (mod 4), then first
consider rdk ≡ 2 (mod 4). In this case, we would need k and d to have opposite parity,
which means exactly one of them is 2 (mod 4), and the others are odd. If rdk ≡ 0
(mod 4), then k and d have to have the same parity, and thus are both even, and this is
the only condition. This is what we wanted to prove.

7 Future Directions and Acknowledgements

There are several future directions that can be pursued in this area. For example, what
other interesting varieties like X with commuting group actions can be written down and
easily computed with, and can we hope to obtain similarly interesting results about the
representation theory of these groups and maximality of these varieties. For example,
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the varieties Y (Q) have the action of an orthogonal group which could have interesting
representation theoretic consequences.
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